eg. Find the area of the sector below:

Sol: $180^{\circ}+60^{\circ}=240^{\circ}$

$$
\begin{aligned}
A & =\pi r^{2} \cdot \frac{\theta}{360^{\circ}} \\
A & =\pi \cdot 10^{2} \cdot \frac{240^{\circ}}{360^{\circ}} \\
& =\pi \cdot 100 \cdot \frac{2}{3} \\
& \approx 209.44 \mathrm{ft}^{2}
\end{aligned}
$$

Eg. Find the area of a sector of a circle has a central angle of $\frac{5 \pi}{6}$ and a radius of 20 cm . Sol:

$$
\begin{aligned}
A & =\pi r^{2} \cdot \frac{\theta}{2 \pi}, \quad \theta=\frac{5 \pi}{6}, \quad r=20 \\
A & =\pi \cdot 20^{2} \cdot \frac{5 \pi}{2 \pi} \\
& =\pi \cdot 400 \cdot \frac{5}{12} \\
& \approx 523.60 \mathrm{~cm}^{2}
\end{aligned}
$$

IV. Trignometric Function

$$
B
$$

Pythogorean The: $a^{2}+b^{2}=c^{2}$

Functions:

$$
\begin{aligned}
& \sin A=\frac{a}{c} \leftarrow \frac{\text { "opposil"" }}{\text { hypoteresse }} \\
& \cos A=\frac{b}{c} \leftarrow \frac{\text { "adjacent" }}{\text { hypolensese }} \\
& \tan A=\frac{a}{b} \leftarrow \frac{\text { "opposite " }}{\text { adjacent }}
\end{aligned}
$$

adjacent
a opposite

Sine
cosine tangent

$$
\mathrm{SOH}-\mathrm{CAH}-\mathrm{TOA}
$$

$$
{ }^{{ }^{\text {may }}} \text { me helpful! }
$$

Similarly,

$$
\begin{aligned}
& \sin B=\frac{b}{c} \leftarrow \frac{\text { "oppositu" }}{\text { hypopeense }} \\
& \cos B=\frac{a}{c} \longleftarrow \frac{\text { adjoces." " }}{\text { hypotense }} \\
& \tan B=\frac{b}{a} \leftarrow \frac{\text { "opposite"" }}{\text { adjaceat" }}
\end{aligned}
$$

eg. Given

Then, we have

$$
\begin{array}{ll}
\sin x=\frac{12}{13}, & \sin z=\frac{5}{13} \\
\cos x=\frac{5}{13}, & \cos z=\frac{12}{13} \\
\tan x=\frac{12}{5}, & \tan z=\frac{5}{12}
\end{array}
$$

Now, equilateral triangle - all 3 sides are equal, and each angle is 60°.

\lessdot all sides are same \longleftarrow each angle is 60°

Now,

$\sqrt{h^{2}}=\sqrt{3}$
$h= \pm \sqrt{3}$

$$
h=\sqrt{3}
$$

