VIII. Cont.

eg. Find the exact value of $\cos 300^{\circ}$, \longleftarrow last example from Moody
sol:

300° connects with 270° or 360°

$$
\begin{aligned}
\cos 300^{\circ} & =\cos 60^{\circ} \text { in ria. } \\
& =\frac{1}{2}
\end{aligned}
$$

eg. Find each of $\sin \theta$ and $\cos \theta$ for $\theta=\frac{5 \pi}{3}$.
Sol:

$\frac{5 \pi}{3}$ Connects to $\pi\left(\frac{3 \pi}{3}\right)$

$$
\begin{aligned}
\sin \frac{5 \pi}{3} & =\sin \frac{\pi}{3} \text { in r.a. }<\frac{\pi}{3}=60^{\circ} \text { in your head } \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\cos \frac{5 \pi}{3}=\cos \frac{\pi}{3} \text { in ra. }
$$

$$
=\frac{1}{2}
$$

eg. Find each of $\sin \theta$ and $\cos \theta$ for $\theta=\frac{3 \pi}{4}$.
Sol:

$\frac{3 \pi}{4}$ corneas to π or $\frac{\pi}{2}$

$$
\pi-\frac{3 \pi}{4}=\frac{4 \pi}{4}-\frac{3 \pi}{4}=\frac{\pi}{4}
$$

$$
\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}
$$

$$
\cos \frac{\pi}{4}=-\frac{\sqrt{2}}{2}
$$

eg. Find each of $\sin \theta$ and $\cos \theta$ for $\theta=\frac{22 \pi}{3}$.
Sol:

$\frac{22 \pi}{3}$ reduces $2 \pi=\frac{6 \pi}{3}$

$$
\begin{aligned}
& \frac{22 \pi}{3}-\frac{6 \pi}{3}-\frac{6 \pi}{3}-\frac{6 \pi}{3}=\frac{4 \pi}{3} \\
& \frac{4 \pi}{3}=\frac{3 \pi}{3}+\frac{\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
\sin \frac{22 \pi}{3} & =\sin \frac{\pi}{3} \text { in } r \cdot a . \\
& =-\frac{\sqrt{3}}{2} \\
\cos \frac{22 \pi}{3} & =\cos \frac{\pi}{3} \text { in } r \cdot a . \\
& =-\frac{1}{2}
\end{aligned}
$$

eg. Evaluate $\tan \frac{27 \pi}{4}$.
Sol:

$$
\begin{aligned}
\tan \frac{27 \pi}{4} & =\tan \frac{\pi}{4} \text { in ra. } \\
& =-1
\end{aligned}
$$

eg. Find the angle θ that $\sin \theta=\frac{\sqrt{2}}{2}$, in $\left[0,360^{\circ}\right]$
Sol: $\quad \theta=45^{\circ} \longleftarrow$ not done

$$
r \cdot a, \ldots+\uparrow+\pi \quad r \cdot a .
$$

eg. If $\cos (t)=-\frac{1}{2}$ and t is in the third quadrant, find $\sin (t)$. Sol: \quad in the third quadrant \longleftarrow big hint

$$
\cos (t)=-\frac{1}{2} \text { in ra. }
$$

$$
t=60^{\circ}
$$

$$
\sin 60^{\circ}=-\frac{\sqrt{3}}{2}
$$

eg. Find the coordinates of the point on a circle with radius 16 corresponding to an angle of $\frac{4 \pi}{3}$. Sol:

$$
\frac{4 \pi}{3}=\frac{4 \pi}{3}-\frac{3 \pi}{3}=\frac{\pi}{3}
$$

$\cos ?=\frac{1}{2}$
60°

$$
\begin{aligned}
& \theta=45^{\circ}, 180^{\circ}-45^{\circ} \Leftarrow \text { ra. } \\
& =45^{\circ} 135^{\circ}
\end{aligned}
$$

$$
\begin{array}{ll}
\cos \frac{\pi}{3}=\frac{-x}{16}, & \sin \frac{\pi}{3}=\frac{-y}{16} \\
\frac{1}{2}=\frac{-x}{16} & \frac{\sqrt{3}}{2}=\frac{-y}{16} \\
8=-x & \frac{\sqrt{3}}{2} \cdot x 6^{\delta}=-y \\
-8=x & -8 \sqrt{3}=y \\
(-8,-8 \sqrt{3}) &
\end{array}
$$

