## **Practice Problems for Exam 1**

- 1. Convert  $155^{\circ}$  to radians. Leave answer as multiples of  $\pi$ .
- 2. Convert the radian  $-\frac{3\pi}{5}$  to degrees.
- 3. Find the measure, to the nearest degree, of the acute angle in the figure below.



- 4. Find the area of a sector of a circle intercepted by an angle of  $150^{\circ}$  in a circle of radius 5.3 cm.
- 5. Find the exact value of  $\cos A$ ,  $\sec A$ , and  $\cot A$  for the figure below.



6. Solve the following right triangle:



Solve each equation. Assume that all angels are acute angles.

- 7.  $\sin(4B + 12^\circ) = \cos(6B 8^\circ)$
- 8.  $\sec(18x) = \csc(6x)$

Evaluate each expression. Give exact (non-decimal) values. Rationalize denominator when applicable.

- 9.  $\cot 120^{\circ}$
- 10.  $3\sin^2 210^\circ + \tan 150^\circ$
- 11.  $4(\csc 60^\circ)(\sin 300^\circ) \tan^2 240^\circ$

Answers:

1. 
$$\frac{31\pi}{36}$$
  
2.  $-108^{\circ}$   
3.  $49^{\circ}$   
4.  $36.8 \text{ cm}^2$   
5.  $\csc A = \frac{w}{120}$ ;  
 $\sec A = \frac{w}{147}$ ;  
 $\cot A = \frac{147}{120}$   
6. B = 69°, a = 54, b = 140  
7. 8.6  
8. 3.75  
9.  $-\frac{\sqrt{3}}{3}$   
10.  $\frac{9-4\sqrt{3}}{12}$   
11.  $-7$