

Practice Problems for Final

1. Find the measure, to the nearest degree, of the acute angle in the figure below.

- 2. Find the area of a sector of a circle intercepted by an angle of 150° in a circle of radius 5.3 cm.
- 3. Solve the following right triangle:

Solve each equation. Assume that all angels are acute angles.

4.
$$\sin(4B + 12^\circ) = \cos(6B - 8^\circ)$$

5.
$$\sec(18x) = \csc(6x)$$

Graph each of the following for one period:

$$6. \ y = -2\cos(x + \frac{\pi}{4})$$

7.
$$y = \sin(x + \frac{\pi}{2}) - 1$$

$$8. \ \ y = \tan(2x - \frac{\pi}{4})$$

Find the inverse (unique) for each of the following:

9.
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

10.
$$\cot^{-1}\left(-\frac{\sqrt{3}}{3}\right)$$

11.
$$\cos^{-1}\left(\tan\frac{\pi}{3}\right)$$

- 12. Find the exact value of: $3\sin\frac{\pi}{8}\cos\frac{\pi}{8}$.
- Given that $\tan \theta = -\frac{3}{4}$ and θ is in quadrant II, find each of following from 13 to 15:
- 13. $\sin(2\theta)$
- 14. $cos(2\theta)$
- 15. $tan(2\theta)$
- 16. If $\cos \theta = \frac{3}{5}$, and $\sin \theta < 0$, find the exact value of $\cos(2\theta)$.

Solve the equation 17 & 18 below for the solutions in the interval $[0,2\pi)$:

- 17. $2\cos^2\theta + 1 = 3\cos\theta$
- 18. $\cos 2\theta = \sin \theta$
- 19. For the triangle *ABC*, where $A = 45.2^{\circ}$, $B = 68.3^{\circ}$, c = 18.9; find *b*.
- 20. For the triangle ABC, where a = 35.1 m, b = 45.7 m, c = 29.5 m; find A.

Answers:

$$2.36.8\,\mathrm{cm}^2$$

3.
$$B = 69^{\circ}$$
, $a = 54$, $b = 140$

9.
$$-\frac{\pi}{3}$$

10.
$$-\frac{\pi}{3}$$

12.
$$\frac{3\sqrt{2}}{4}$$

13.
$$-\frac{24}{25}$$

14.
$$\frac{7}{25}$$

15.
$$-\frac{24}{7}$$

16.
$$-\frac{7}{25}$$

$$17.\,\,0^{\circ}\,,60^{\circ}\,,300^{\circ}$$